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In order to describe non-Gaussian kinetics in weakly damped systems, the concept of continuous time
random walks is extended to particles with finite inertia. One thus obtains a generalized Kramers-Fokker-
Planck equation, which retains retardation effects, i.e., nonlocal couplings in time and space. It is shown that
despite this complexity, exact solutions of this equation can be given in terms of superpositions of Gaussian

distributions with varying variances. In particular, the long-time behavior of the respective low-order moments

is calculated.
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I. INTRODUCTION

Ever since the famous work by Einstein on Brownian mo-
tion in 1905 [1], there has been a continued effort by count-
less scientists to better understand the dynamics of tracer
particles in random environments. In the more recent past, a
strong emphasis in this area of research has been placed on
the investigation of the origin and the consequences of
anomalous (i.e., non-Gaussian) diffusion (see, e.g., Refs.
[2-5]). A powerful mathematical framework for the descrip-
tion of non-Gaussian diffusion has been put forward by
Montroll and Weiss [6]. In the 1960s, they introduced the
notion of continuous time random walks (CTRWSs). Here,
one considers distribution functions of step size and/or wait-
ing time, which do not possess finite low-order moments. As
a consequence, the mean square displacement (x?) is not pro-
portional to the time # anymore. Instead, one tends to obtain
(x*yct” with v# 1. For v>1, one speaks of “superdiffu-
sion,” whereas the case v<<1 is called “subdiffusion.”

Although most investigations on anomalous diffusion are
based on a random-walk-type description in real space, there
have also been a number of studies which employ a phase
(position-velocity) space approach (see, e.g., Ref. [7], and
references therein). In order to understand under which con-
ditions such an extension is appropriate, it is useful to recall
some basic characteristics of Langevin equations. Attempting
to relate statistical descriptions of Brownian particles to the
underlying dynamical equations, Langevin [8] suggested to
extend Newton’s law of motion by a fluctuating force F,
which is characterized (only) in terms of its statistical prop-
erties. Thus, for a specific realization of F, the particle dy-
namics is determined by

a0 o dut) _F@).

1
dt dt m M

Kramers [9] considered a special case of Eq. (1) in which the
force is separated into a stochastic part and a deterministic
part according to

F(1) =mA(t) - VU[x(1)] = \mu(z). (2)

Here, A(7) is usually taken to be a Wiener process and U(x)
is a potential. [In the present paper, we will consider the case
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U(x)=0.] For strongly damped systems, i.e., for large values
of the friction coefficient A, an adiabatic approximation (see,
e.g., Ref. [10]) yields the equation

P V), 3)

where V(f)=\"'A(¢). Equations (3) and (1) are sometimes
called, respectively, V-Langevin equations and A-Langevin
equations [11]. This nomenclature indicates whether it is the
velocity V or the acceleration A that is modeled as a stochas-
tic term.

This discussion highlights the fact that the conventional
CTRW approach is linked to V-Langevin equations—
implying overdamped particle dynamics. In practice, many
systems in physics, chemistry, and biology will not satisfy
this condition, however. This means, the particles may be
weakly damped. One is thus led to consider the CTRW ana-
log of A-Langevin equations, describing the dynamics of a
particle with finite inertia under the influence of a stochastic
force. In the context of such a model, the latter will be de-
scribed as a series of “random kicks” such that the particles’
motion is sometimes changed abruptly, whereas it is ballistic
most of the time. Taking such a model as a starting point, we
have recently derived a fractional equation of the Kramers-
Fokker-Planck (KFP) type [12]. The main goal of the present
work is to present the detailed derivation of an exact solution
of this equation which could only be briefly mentioned in
Ref. [12]. As will become clear in this context, the necessary
calculations are highly nontrivial and reveal interesting as-
pects of the underlying stochastic dynamics.

The remainder of this paper is organized as follows. In
Sec. II, which mainly has a pedagogical purpose and sets the
stage for the main part of this work, we will revisit and
discuss the derivation of a fractional KFP equation (in the
force-free limit), which was first presented in Ref. [12]. It
retains retardation effects and is characterized by a nonstand-
ard collision operator introducing nonlocality in time and
space. Several exact results for this fractional KFP equation
are then derived in Sec. III. In particular, we show that exact
analytical solutions can be given in terms of superpositions
of Gaussian distributions with varying variances. Moreover,
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the long-time behavior of the respective low-order moments
is calculated and discussed. A summary of key results is
given in Sec. IV, along with some conclusions.

II. FROM CTRWS TO A FRACTIONAL KPF EQUATION
A. Task at hand

In his well-known work from 1905, Einstein [1] provided
a link between the microscopic dynamics of a Brownian par-
ticle and the macroscopic phenomenon of diffusion. In par-
ticular, he was able to show that the probability distribution
function (pdf) g(x,7), describing the position of a Brownian
particle, obeys the diffusion equation

dg(x,1)

L =KAg(x.). (4)

Here, K is a constant and A=V? is the Laplace operator.
Some 60 years later, Montroll and Weiss [6] put forward a
generalization of Einstein’s theory of diffusion that is able to
also describe the phenomenon of anomalous diffusion. To
this end they introduced the notion of continuous time ran-
dom walks (CTRWs). They showed that within this frame-
work, the pair distribution functions (PDFs) are determined
by fractional diffusion equations, such as

dg(x,t
WO _ pr-ikagix., (5)
ot
where the so-called Riemann-Liouville operator Dtl_‘9 is de-
fined via

1-6 _ 1 ﬁft dt' ’
Dt g(X,t)— 1—‘(5) &[ 0 (t_t,)l_gg(x9t ) (6)

for 0<é<1. Here, I" denotes the well-known I' function.
Note that for §=1, Eq. (5) turns into Eq. (4). For more in-
formation on CTRWs and on fractional diffusion equations,
we refer the reader to the recent review papers by Metzler
and Klafter [4,5].

A generalization of Eq. (4) from real space to phase
(position-velocity) space is given by the Kramers-Fokker-
Planck (KFP) equation [7,10,14]

g +u-V,+Ax) -V, |f(x,u,1) = Lepf(x,u,0).  (7)

Here, we have introduced the Fokker-Planck collision opera-
tor

Lrpf =TV, (uf) + KAf. (8)

[In the following we will assume, for simplicity, that the
acceleration term A vanishes identically. It can be reincluded
later if necessary.] As already mentioned in the Introduction,
the main task of the present paper is to revisit the rigorous
derivation of a fractional variant of Eq. (7) from first prin-
ciples (see Ref. [12]) and to provide exact solutions. In this
context, it will become clear that retardation effects, which
have been neglected in previous publications on fractional
KFP equations, are actually an essential ingredient of the
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FIG. 1. A ballistic particle whose motion is sometimes changed
abruptly by a “random kick.” The transition probability 7(x,u,) is
defined in the text.

theory, leading to significant, even qualitative changes in the
system’s behavior (see results of the Sec. II B).

B. Master equation for CTRWs of inertial particles

In order to describe the dynamics of inertial, weakly
damped particles, we propose the following model, which
may be considered as a generalization of standard CTRW
theory [2,3,6]. An individual particle is assumed to be sub-
ject to a series of random kicks such that its motion is some-
times changed abruptly, whereas it is ballistic most of the
time. Let us consider a particle that at time ¢’ is located in the
volume element dx’ about x’, and in the time interval
[t',t'+dt'] changes its velocity to a new value that lies in the
velocity space element du’ about u’. The probability for
such a process shall be denoted by

n(x',u’,t")dx'du'dt’ . 9)

After a (random) time period 7=¢—¢', this particle will un-
dergo a further transition to a state with the velocity u at the
position x (see Fig. 1). The corresponding conditional prob-
ability shall be called

&(x,u, 7;x’,u’)dxdudr. (10)
We assume that this PDF can be written in the form
&x,u,mx ,u')=8x—-x"—u'7)F(u;u")W(ru'). (11)

Here, W(7;u’)d7 describes the probability that a transition
occurs in the time interval [ 7, 7+d7], and F(u;u’)du deter-
mines the probability that the particle’s velocity will end up
in the velocity space element du about u. Both quantities
may depend on the velocity u’ before the transition, whereas
they are assumed to be independent of x and x’. Note that
during the time interval [¢',7], there is no change of the ve-
locity of the particle. Its motion from point x’ to point x
=x'+u’7 is purely ballistic. Under the assumption that the
PDF &(x,u,7;x’,u’) is statistically independent from the
history of the particle path and using Eq. (11), we can relate
the PDFs 7(x,u,?) and 7(x’',u’,t’) via the following equa-
tion:

041103-2



EXACT SOLUTION OF A GENERALIZED KRAMERS-...

W(X,U,f) _f()(X’u) 50)
:de’fdu’f di' &x,u,r—1';x"u')p(x",u’, 1)
0

t
=fdu’f dt’F(u;u’)W(t—t’;u’)e_(f_”)“"vxn(x,u’,t'),
0
(12)
where f;(x,u) denotes the initial condition.
Having established an integral equation that determines
the time evolution of 7(x,u,t), we are now interested in the

joint position-velocity distribution function f(x,u,z), which
is defined as

f(x,u,t):fdx'f dt'dx-x"—u(t-1")]
0
Xw(t—1t";u)n(x",u,t")

t
:f dt'w(t - t’;u)e'("”)“‘vm(x,u,t’). (13)
0

Here, w(7;u) denotes the probability that the velocity has

taken on the value u during the entire time period 7. For this
quantity, we have the obvious relationship

w(ru)=1- ffdtW(t;u). (14)
0

In order to derive an equation describing the time evolution
of f(x,u,7), we may proceed in a way analogous to the stan-
dard deviation of the master equation for CTRWs [4]. We

start by writing down the Laplace transforms of Egs. (12)
and (13),

n(x,u,)\)zfo(x,u)+fdu’F(u;u’)
XW\+u'-V,u')g(x,u’,\) (15)
and
FxuN) =wh +u- Viu)p(x,u,N). (16)
Since in Laplace space, Eq. (14) reads

w()\;u)=#()\;u), (17)

Eq. (16) can be rewritten as

A+u-V)fx,u,N)=[1-W\+u-V;u)]nx,u,\).
(18)

Equations (15) and (18) then yield
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A+u-V)f(x,u,N)=- Wk +u- Vi u)n(x,u,\)

+ {fo(x,u)+fdu’F(u;u’)

XON\ +u’ - Vx;u’)f(x,u’,)\)}, (19)

where we have introduced the quantity

AWNw) 11— Aw(\;u)

) = 1-=W;u)  wi;u)

(20)

Expressing f,, in terms of f as
Jolx,u) = f(x,u,1=0) 1)
and using the identity
WA +u-Viu)npx,u,N) =P\ +u- Viu)f(x,u,\),
(22)

which follows from Egs. (18) and (20), the Laplace inversion
of Eq. (19) yields the master equation

[% +u- Vx}f(x,u,t)

=f dt’Jdu’F(u;u')(D(t—t';u')f(x—u’(t—t’),u’,t')
0

—ftdt'fl)(t—t';u)f(x—u(t—t’),u,t’), (23)
0

which determines the time evolution of f(x,u,f). Further-
more, the Laplace inversion of Eq. (20) yields, in connection
with the initial condition w(0,u)=1,

M:-fldt’(I)(t—t’;u)W(t'§“)’ (24)
ot 0

which identifies ®(z;u) as a kernel determining the time evo-
lution of w(z;u). For example, the choice

O(t;u) = Ad1) (25)

leads to

{(% +u- Vx]f(x,u,t) =- A{f(X,UJ)

_fdu’F(u;u’)f(x,u’,t)}.
(26)

Another specific choice of the function ®(z;u) leads to a
connection with fractional diffusion equations, as will be
made explicit below.

In the language of kinetic theory, Eq. (23) can be inter-
preted as follows. The left-hand side describes a system of
particles moving ballistically, i.e., with constant velocity and
zero acceleration. The right-hand side represents a collision
operator which consists of a source and a sink. The phase
space density of particles at (x,u) is increased at time ¢ by
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particles starting from x—u’(z—¢') at time ¢’ with a velocity
u’ and making a transition to the velocity u at time ¢ (and
position x). f(x,u,?) is decreased, on the other hand, by par-
ticles making a transition from the velocity u to some other
velocity. Obviously, the collision operator is nonlocal in time
and space, in stark contrast to virtually all expressions com-
monly used in the kinetic theory of gases or plasmas (a no-
table exception is, e.g., Ref. [13]). This fact lends a special
character to Eq. (23), which describes CTRWs of particles
with finite inertia. As will be shown in Sec. II C, this model
is able to capture non-Gaussian kinetics in weakly damped
systems. Furthermore, we want to point out that the master
equation is invariant with respect to Galilean transformations
provided ®(r—¢',u’) is independent on u’ and F(u,u’) de-
pends only on the difference u—u’. Galilean invariance im-
plies that all probability distributions f(x—cz,u+c,t) with
arbitrary velocity ¢ solve the master equation. This fact sheds
light on the occurrence of time retardation in the collision
operator.

C. Derivation of a fractional KFP equation

For concreteness, we now consider an important class of
processes for which ®(u,¢) can be replaced by the velocity-
independent function AQ(r), and F(u;u’) can be represented
by the Gaussian

Flu: ,)_< A )3/2 (u—u’+Tu'/A)? (7)
W= yax) P 4K/ :

which satisfies the constraint

fduF(u;u’) =1. (28)

This expression can be derived in the spirit of the Rayleigh
model for Brownian motion [14] by considering a heavy test
particle of mass M embedded in a thermal bath of light par-
ticles of mass m (for details, see Ref. [15]). For large values
of the parameter A, which is proportional to the mass ratio
M /m, one obtains

f du'F(u;u’)g(u’) - g(u) = A~ Lrpg(u) (29)

to leading order in A~' where the Fokker-Planck collision
operator Lpp is defined by Eq. (8). For details, the reader is
referred to Appendix A. Demanding at the same time

lim %t) =0(1), (30)

A—o

Eq. (23) then takes the form
(9 1
{— +u- Vx]f(x,u,t) = LFPJ di'Q(t—1")
Xf(x—u(t—1"),u,t") (31)

for A —oe.
We would like to point out that Eq. (31) is a rigorous
result based on a consideration of CTRWs in phase space. It
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represents a highly nontrivial extension of the usual (force-
free) KFP equation,

[&it +u- Vx]f(X,ll,l) = Lrpf(x, 1), (32)

which is recovered for Q(t—t')=6(t—t'). This choice for
Q(t) corresponds to the waiting time distribution

W(t) = A exp(— Ar), (33)

which satisfies

fc dtw(r) =1, 1= fm dnw(t) =1/A. (34)
0 0

Equation (30) thus implies that the mean time between col-
lisions gets smaller as A gets larger, such that A7=1.

In comparison to Eq. (32), Eq. (31) contains two different
features: temporal memory (i.e., the stochastic process is not
Markovian) and retardation (due to the particle’s finite iner-
tia). Although the former effect has been considered before
by many authors (see, e.g., Ref. [15]), the latter has never
been included. It is important, however, in order to ensure
Galilean invariance, as pointed out before. Retardation enters
quite naturally in the present CTRW framework, and its
physical origin is evident, given the mixed nature of the un-
derlying physical process—a particle being subject to a de-
terministic acceleration and a series of random kicks. It in-
troduces qualitatively different characteristics as will be
shown in Sec. III.

As discussed in Ref. [4], a fractional diffusion equation
for the pdf g(x,7) of an overdamped particle is obtained from
the CTRW master equation

dg(x,t
g ( ):K

- fo dr' Q(r—1")Ag(x,t") (35)

by the formal substitution [cmp. Eq. (6)]

f dr' Q(t—t")g(x,t") — Dtl_‘sg(x,t), (36)
0

which then yields Eq. (5). The underlying physical reason is
the assumed limiting behavior

_
(l— tr)2—§

of Q(¢t—1t") for large values of (r—¢"). The substitution (36)
can be considered as a regularization of the function (37),
which leads to divergent terms for (¢—¢")—0 [11]. With re-
gard to Eq. (31), we now have to find suitable regularizations
of the expression

Or—1') - (37

f dr'O(t—1)e "V (x,u,1), (38)
0

where Q(t—t') again is given by Eq. (37). As is shown in
Appendix B, expression (38) is to be replaced by the “frac-
tional substantial derivative”
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-5 R I
D, f(x,u,t)—r(é)[at+u V]

tooar '
Xf oy T ), (39)
.

where I'(6) denotes the well-known I' function, and the mas-
ter equation then reads

[% +u- V] fxw,0) = LD, f(x,u,0). (40)
For =1, this fractional KFP equation turns into Eq. (32). We
note in passing that the fractional substantial derivative (39)
may also be defined by means of its representation in
Laplace space, Dtl‘5<—> [N+u-V]'~? and that the operators
Lgp and Dll_‘s do not commute. Moreover, in Egs. (27) and
(8), the replacements A— Ay I'=T'5 and K— K (with
units [Az]=[T's]=s% and [Ks]=m”s™>~?) have to be made.
For 6<1 and A —0, one then has ®(\)=As\'~? and

o) N

W) = PO +N Ay

(41)
Defining a characteristic time scale 7 via the (nonanalytic)
low-\ behavior of the waiting time distribution, W(\)=1
—(A7°%+..., we find that in the fractional case, Eq. (30) im-
plies that

Asm0=1, (42)

i.e., 7— 0 for A ;—oc. In this context, 7is not to be confused
with 7, however. The latter quantity is infinite here, due to
W(z) o179 for t— oo,

D. Comparison to other KFP-type equations

In the following, we compare Eq. (40), which may be
considered a key result of the present section, with other
KFP-type equations that can be found in the literature. In
fairly recent work by Barkai and Silbey [15], an equation
similar to Eq. (40) was proposed. In the force-free case, it
reads

[% +u- V]f(x,u,t) = LFPD,I_‘Sf(X,u,t), (43)
where the usual Riemann-Liouville operator Dtl"ﬁ [see Eq.
(6)] has been used in lieu of the fractional substantial deriva-
tive Dtl_‘s. Obviously, retardation effects are not taken into
account in the collision operator of Eq. (43). This has two
main consequences. First, Eq. (40) exhibits Galilean invari-
ance for I'=0, whereas Eq. (43) does not. Second, the long-
time behavior of the low-order moments differs in these two
cases, as will be demonstrated in Sec. III. Interestingly, both
Egs. (40) and (43) reduce to the same fractional Fokker-
Planck equation

JF(u,t)
ot

= LpD) °F(u,1) (44)

for the quantity
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F(u,t) = f dxf(x,u,1) (45)

if they are integrated over space. In Ref. [15], Eq. (43) was
introduced as a generalization of Eq. (44), but the same can
be said about Eq. (40). However, only the latter equation can
be derived rigorously from a microscopic dynamical model
and preserves Galilean invariance in the appropriate limit.

Another kind of fractional KFP equation has been pro-
posed in Refs. [16—18]. Using a non-Markovian generaliza-
tion of the Chapman-Kolmogorov equation, the authors ob-
tained

af(x,u,r)

i = (9D,1_5[— u- V+ ‘CFP]f(X’u’t)7 (46)

where the factor @ is defined as the ratio §=7"/7° of an
intertrapping time scale 7 and the waiting time 7 taken to the
power &. Equation (46) describes subdiffusive transport and
reduces again to Eq. (44) with 0I'—1I'5 and 0K — K if the
spatial coordinates are integrated out. Moreover, as a variant
of this approach, the fractional KFP equation

Lﬁt +u- v} fxown) = 0D Lpfxow)  (47)
has been put forward [19]. It describes sub-ballistic superdif-
fusion and turns out to be identical to Eq. (43) if the substi-
tutions 6I' =I5 and 6K — K 5 are made.

Obviously, neither of the fractional KFP-type equations
presented in this section do retain retardation effects. Hence,
neither of them possesses Galilean invariance (for I'=0).
However, as will be shown next, the inclusion of retardation
alters the particle dynamics even qualitatively and should
therefore be taken into account.

III. EXACT SOLUTIONS OF THE GENERALIZED KFP
EQUATIONS

A. A generic ansatz

In the following, we shall look for exact solutions of Egs.
(31) and (40), where the initial condition is chosen as

f(x,u,1=0) = 8(x)5(u). (48)

(Note that the general solution of Eq. (31) without retarda-
tion and for I'=0 has been given in Ref. [20].) Ignoring its
right-hand side, Eq. (31) reads

[£+u~Vx}f(x,u,t)=0. (49)
This equation has the exact solution
fxu,n)=G(§n), (50)
where
E=x-ut, G(x,u)=f(x,u,r=0). (51)

In the general case (i.e., if the right-hand side is finite), we
are thus led to look for a solution of the form
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fx,u,t) = H(&u,1). (52)
Using Eq. (31), we find that H(&,u,1) is determined by

M = Jldt,Q(t_ t,)[r(vu - th) ‘u
ot 0

+K(V, = V)2 JH(Eu,t'). (53)

Introducing the generating function Z(k, %,1) via

Z(Kk, n,t):fdgfdu exp(ik-&+ing-u)H(é u,1),
(54)

we obtain

9Z(k,;.1) f !

P dr'Q(t—1t")[-T'(p-ki) -V,

0
- K(p-kt)*1Z(k, p,t"). (55)

Equation (55) can be solved by the integral transform

Z(k,n,t):fdajd,deyW(a,,B,y,t)

2
Xexp(%ﬂz—ﬁk- n—%) (56)

where the unknown function W(a,B,7,) is to be deter-
mined. Equation (56) represents the general solution of Eq.
(40) for the initial condition Z(k, 5,=0)=1, provided suit-
able boundary conditions for W(«, B, 7y,t) are specified as
discussed below. The corresponding distribution function
then satisfies Eq. (48). As a consequence, we obtain the char-
acteristic function Z(k, #,7) as a superposition of character-
istic functions corresponding to a Gaussian process with cor-
relations (u?)=a, (u-&=p4, and (£&)=y. In Eq. (56), the
integral is over all positive values of & and v, and the value
of B is restricted to | 8| < (ay)"?. Fourier inversion yields the
corresponding probability distribution. The result is an exten-
sion of the well-known ansatz for the solution of the time
fractional diffusion equation for a single variable, Eq. (5),
discussed in [21]. For more information, refer the reader to
the review papers [4,5]. Furthermore, we note that such rep-
resentations have also been used in order to model non-
Gaussian distribution functions of velocity increments in
fluid turbulence [22-24] and seem to be a good starting point
for dealing with the phenomenon of intermittency. For a de-
tailed treatment, it turns out to be useful to distinguish be-
tween the cases '=0 and I"# 0. We remind the reader that
the case I'=0 may be considered as a generalization of
Obukhov’s model [25] for the motion of a Lagrangian par-
ticle in fluid turbulence using an accelerating force with the
characteristic statistics of a CTRW.

B. Case I'=0

1L Introducing the functions w,(a,t) and w(y,t)

In the limit I'—0, it is straightforward to determine the
probability distributions of the variables u(z) and &(zr), gov-
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erned, respectively, by the characteristic functions Z(0, »,¢)
and Z(k,0,7). In fact, from Eq. (55) we obtain the following
two equations:

9Z(0,m.t)

—f dr' Q(t—t"Kq?Z(0,m.1") + 8(1),
at o

dZ(k,0t !
% = ;ZJ dt' Q(t—t")KK*Z(k,0,t") + 8(1).
0

(57)

Here, the & functions have been added in order to take into
account the initial condition Z(k, 7,0)=1. These equations
can be solved by the ansatz

2(0,,1) = f daw,(a,1)e ",

Z(k,0,t) = J daw§('y,t)e_7k2/2. (58)

Using the relationships

J
7Z(0,m,1)=-2 f dcku(a,t)(9—6_6"’72/2
Je4

J
=2 f da—w,(a, z‘)e““’zl2 —2w,(0,1),
Jda

Jd
K>Z(0,9,t) =2 f dawga, t)é'—e_”l“zl2
Y

J
=2 f daa—wg(a,t)e_aﬂzlz—2W§(0,l), (59)
Y

we obtain the following two equations determining the func-
tions w,(a,1) and wg(y,1):

aw,(a,t ! ow,(a,t’
M=_2Kf dl’Q(t—t’)ﬁ,

Mw.1) =—2Kt2J dt’Q(t—t’)Lw il ). (60)
or 0 dy

Furthermore, in order to ensure that the initial condition
Z(k,n,0)=1 is satisfied, these functions have to obey the
boundary conditions [see also Eq. (91)]

2Kf dr' Q(t—1t")w,(0,1") = 8(1),
0

2Kt2fl dt' Q1= 1" )wgl0,1") = &(1). (61)

0

These equations can be solved in Laplace space. The bound-
ary conditions read as follows:

Wu(()’)\) = 2KQ()\) >
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AZ
wg(0,N) = {— +b\ + c} (62)

2KQ(N)
The solution for w,(a,\) reads

1
e—a)\/[ZKQ()\)]. (63)

Wu(aa)\) = 2KQ()\)

No closed expression could be obtained for w(y,\). In
Laplace space, wg(y,\) is determined by the differential
equation

Awe(y.\) = 2K 9

_Q()\)Wg(%)\) (64)
Using the ansatz
A2
we(y.N) = u(§N) (65)
‘ ony’
one obtains the differential equation
? a
) == 2K— 5N ugdy.\). 66
Q()\)ug(’}’ )= (97(9)\2 Mg()’ ) (66)

We will return to this equation later.

2. Calculating the moments of w,(a,t) and w¢(y,t)

We now turn to Eq. (58). It allows for a recursive calcu-
lation of the moments (u(¢)>") and (&(¢)*") obeying the initial
conditions (u(t=0)>"y=0 and (&(r=0)?")=0. For the sake of
simplicity, we resort to the one-dimensional case. Using Eq.
(54), we obtain

n (2’1)' - n 2) n
w(y="2 JO daclvw, () =2} (),
INCOLN 2n)!
o ="0 fo ayYwy) = =20 (67)

These relations are a direct consequence of the representation
of the generating function (54) as a superposition of Gauss-
ian generating functions with moments «, B, 7y, and with
weights w(a, B8, v,t). In order to determine the moments of
u(r) and x(¢), one thus has to determine the moments ()
X (1) and (¥/)(f). The latter can be determined recursively

d1<a">(t) = ZKHJ dr' Q(t—t")a" ") (1"),
t 0

d 1
7= 2Kn12f dr'Q(t—1")(y™H().  (68)
0

These equations can again be solved in Laplace space. The
transformed recursion relations read

o)
A

(@Y(\) =2Kn=—(a""")(N),
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(YH(\) = 2Knt MYHN. (69)

A o»\?Q

The first of these equations can be solved explicitly. One
obtains

<a"><x>=n![2'(%(”}"=nz[<a><m". (70)

3. Moments of w,(a,t) and w(y,t) in the fractional case

Next, we consider the fractional case, Eq. (40). Here, we
have Q(N)=\!79, as is known from fractional calculus [4,26].
This will lead us to the scaling laws

<u(t)2"> - l‘n&, <x(t)2”) o l‘"(&z). (71)

As indicated above and outlined in Appendix B, we make the
replacement

f dr'o(t—1') — (72)

1 EJ
L) a), (t—1)'=°

Because of the initial conditions (&")(r=0)=0 and (y")(¢
=0)=0, we have the recursion relations

— L td—t/ Ny — -0 n—1
<a">(t)—2Knr(5)f0(t_t,)1_5<a" )(t') =2KnD; (") (1),

1

0 =2Kn i | )
=2Kn*D;%(y"~")(1). (73)
This chain of equations can be solved by the ansatz
(@)(1) = @, (Y1) = 3" . (74)
Using the identity
prowe THFD s (75)

! r(6+um+1) °
we obtain the recursion relations

e, Tl =1)5+1]
G s 1)

IMr-1)2+6+1]
Yn= 2Kn F[n(Z + 5) _ 1] Yn-1- (76)

It follows that

1
a,=(2K) n!m,
(2+ O(2+46-1)

= 2R s ]

m'G-1. (77
4. Determining w,(a,t) and wg(y,t) in the fractional case

In the fractional case, the probability distribution w,(c,1)
can be written in terms of the function Lg which is the left-
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sided Lévy distribution [4,21] (often denoted as inverse Lévy
distribution) of order &

-1/6
wu(a,t)=j—;L5(x;), x:[“glg‘s)} .8

As mentioned before, wg(7y,) can be expressed by means of
ug(y,t) whose Laplace transform is determined by Eq. (66).
In the present context, this equation reads

a &
AN *ouy,\) =— ZKa— 7)‘ Zugdy.\). (79)

Using the ansatz

u(y,\) =

one obtains the differential equation

U9 = U(y), (80)

P
y'*U(y) = - K—S[2y°U()]. (81)
ay’
Thus far, no analytical expression for U(y) has been found.
However, one can establish the existence of a scaling solu-
tion of the form

1

1+1/(2+6) * (82)

t
wely.1) = W 1/(2+5) y

5. Low-order moments of u(t) and x(t)

To complete our discussion of the solution of Eq. (40) for
I'=0, we now provide explicit expressions for the low order
moments. They read

2K
ra+ 6)

5

(u(1)’) =

4K t5+2
rG+o

(x(t)?y =

24K?
(u(ty*y = mtﬁ,

2

87,2644
r(s 20) N

x(H)* = [80+32(1-68)—448(1

(83)

In deriving these expressions, we have made use of relations
of the form

(€D =(x()%) - 2x(1) -u()r + @)D, (84)

Finally, to quantify the deviation from normal statistics in the
case I'=0, we calculate the flatness of the PDFs for the sto-
chastic variables u(¢) and x(¢). One obtains

p Wh =3 T(1+05)?
T uk? I'(1+26)

Since ¢ is taken from the interval 0 <=1, the flatness F,
satisfies 0 <F,<3. Similarly, one gets

-3. (85)
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o 0.5 1

ob o T s
0 0.5 1

FIG. 2. The flatness of the PDFs for the stochastic variables u(r)
and x(7) [denoted, respectively, by F, and F,] as a function of the
parameter 9.

I'(3+96)?
I'(5+20)
81-6)]-3. (86)

Thus, the flatness of the process x(z) lies in the interval 0
<F,<11. Both F, and F, are displayed in Fig. 2.

o =30
FX <x2>2

X[20+8(1 - &) -

C. The case I'#0
1. Distribution function as a superposition of Gaussians

For I' # 0, the function W(«, 8, 1) has to obey the evo-
lution equation

Maprys) __ f dt' Q¢ - t)[29,(K - aT')

at 0
- dg(2Kt+TB—Tar) + 23, (K* -~ T'B1)]
XW(a, B, y,t"). (87)

In order to prove this relationship, we note that using the
ansatz (56), Eq. (55) reads

J dadBd 7—&W( a(,%ﬂ, %.1) e—aﬂ2/2—/3 pk—k%2

=fdad,8dyJ dt'Q(t -t YW(a, B, v, )[(- 2T a + 2K)d,,
0

+(Tat - 2Kt —T'B)dg+ (2K + 2I'B1)d, ]
X e T PBIRAL L 51 (88)

The & function has been added in order to take into account
the initial condition

Z(k,n.0)=1, f(&u,t=0)=05£)du). (89)

Moreover, we have made use of relationships of the form

2 2 2 2
PeTBIRAC _ 0y e Bk AT (90)

Equation (87) is then obtained by partial integration. We
would like to point out that there are contributions from the
boundaries a=8=0, y=8=0, and B==(ay)"? that can be
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fixed in order to guarantee the initial condition Z(k, 5,0)
=1 This leads to the following boundary conditions [using
the shorthand notation W(r)=W(0,0,0,1)]:

W(a.f= = ()", 7.1) = 8&) () W(2),
W(0,0,7.1) = (y)W(),
W(,0,0,1) = a)W(1),

W(e, 8,7.0) = 8(a) 8(B) dla). (91)

Consequently, the function W(¢) is determined by the condi-
tion

2det’Q(t— M+ AW )] = 8¢). (92)
0

As a result, we obtain the following representation of

f(x,u,1):

f(x,u,0) = J da f dp j dyW(a, B, y,t)[(2m)N det A1

-0y — Oy uf) - On(x— Ml)z} '

X
exp[ 5 >

(93)

Here, N denotes the spatial dimension of the system, and Q
is the inverse of the matrix A with the elements A =a,
A22= Y, and A12=A21=B, i.e.,

_ On Q12)= 1 (+’Y —,8> 94
¢ (Qm O0n/ ay-p\-B +a/ 4)

This means that the position-velocity distribution function
f(x,u,t) can be written as a superposition of Gaussians with

varying variances. The function W(a, 8, y,t) can be viewed
as a time-dependent variance distribution.

2. Distribution function in the Obukhov case
It is quite interesting to see how the ordinary Obukhov
model (31), which is defined by I'=0, Q(t—t')=8(t-t"), can
be solved by an application of Eq. (93). In this case, the
function W(a, B, v,t) obeys [see Eq. (87)]

IW(a,B,y.t)

p =—2K[d,— tdg+ 1?9, ]W(e, B, 7.1). (95)

This type of linear first-order partial differential equation can
be solved by the method of characteristics. Here, the latter
are given by

a(t) =2Kt + ay,

B(t) =— Ki* + Bo-

3

Y =224 (96)
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Using the initial condition,

W(a(t), B(1), ¥(t),1) = W(ay, By, ¥o) = 8etg) 8(By) ),
(97)

the function W(a, B, y,t) reads

2K

W(a,B,y,1) = 8la—2K1) 8(B + Kt2)5<'y— T) (98)

leading in a straightforward way to

1 3 3
f(x,u,1) = N(t)exp[— Etuz + K_tzx ‘u- [(_ﬁxz] . (99)

3. Calculation of w,(a,t)

Let us now turn back to the general case, considering the
quantity w,(a,1). Its time dependence is determined by

M =- f dr' Q(t - t’)i[ZK— 2lalw,(a,t).
(100)

This equation can be solved in a straightforward manner in
Laplace space

1 ( Fa))\/[ZQ(A)F]—l
JA\) = -— . 101
w,(a,\) 2KON) X (101)
Here, we have used the initial condition
0,\) = . 102
w,(0,N\) 2KON) (102)
For Q(\)=\!"?, we obtain
A1 < Fa) :|
AN)=—""""— 2 'in| 1= — |\?].
wleN) = e Tawik) eXp{( o=
(103)
Using the shorthand notation
Ta)|™
A=|2K|1-— (104)
K
and
K(l Fa)l (1 Fa) (105)
= — — — — |In -—,
Tl Tk K

the inverse Laplace transform can be determined with the
help of the relationship

51 _-As\® 1 ! !
wy(a,N) =AN""e _)5A”551+1/5L5[(As)”5 =w,(a1),

(106)

where Lg(x) denotes the half sided Lévy distribution of order
0.
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4. Second-order moments of u(t) and x(t)

In order to compute the second-order moments of u(r) and
x(1), Eq. (87) can used to obtain the following relations in
Laplace space:

___2K00)
@ = o romT’
0 2K
(BYN) =— FQ()\)KQ(M[T - F(d)(N)} ,
2K & Q(\) 2I' ¢
(»(N) = NEVE TgQ(M(BX?\)- (107)

The time-dependent quantities {a)(r), {(B)(¢), and {y)(¢) can
be evaluated from Eq. (107) by means of the relation

“ da
o OOV

and the corresponding Laplace inversion

e~ aNOM)+al'] _ _ ; (108)

A +nTQ(\)

G(n,1) = Jw dae™™ w(a,1). (109)
0

Alternatively, one can evaluate the second-order moments in
the following way. Starting from Eq. (31), one obtains

GQ2,t) = (W (1) =20(1) * K,
G(L)™ # (u()x(t))y = (u?(t)) = T Q1) * (u?(t)),
G(0,0)x*(1)) = 2{u(t)x(1)).

Here, we have introduced the following notation for the con-
volution integral:

(110)

G(n,1) *h(t)=Jldt’G(n,t—t’)h(t’). (111)
0

We would like to point out that the term —I'Q(¢) *(u*(z)) in
Eq. (110) is due to the time retardation effect in the collision

term of the master equation (31). The solutions in Laplace
space read

Ay 2K
@) = A2L + MO
i K 1 1 Q'(\)
) = s MM T+ Mo { o o } ’

(200 = ). (112)

It is interesting to consider the long-time limit of these ex-
pressions, i.e., the behavior for small values of \. Assuming
that A\/Q(\) — 0 for A —0, we obtain

PHYSICAL REVIEW E 74, 041103 (2006)

im0 = T
- _ky 1 L0y
EWW“”F%[QM+FQM}’ ()

while the last equation, which reads

1d 5
——(x(1)7) = x(Bult 114
S 0 = () (114)
in the time domain, remains unaltered. This limit is obtained
by approximating G(n,\)=nl". The term Q' (N\)/Q(\) is due
to the retardation effect in the collision operator. From this, it
follows that (u(f)?) approaches a constant in the long-time
limit,

lim{u(0)*y = K/T,

—©

(115)

independent of the choice of Q(r). The long-time behavior of
(x(¢)u()) and (x(¢)?), on the other hand, depends on the long-
time behavior of Q(f). Taking Q(\)=\!~? for A — 0, the sec-
ond part of Eq. (113) turns into

. K K _
i{l}){xu}(k) = ﬁw” +(1- 5)F>\ 2, (116)

which corresponds to

}imw<x(t)u(t)> = r2-9 §t1_5+ (1- 5)?;. (117)

Using Eq. (114), one finally obtains

}Ln;(x(t)2> “TG-9 %zz—h (1- 5)?#. (118)

Thus, for =1, we recover the classical result of normal
diffusion of an overdamped particle,

W= T GOu) =55, G0 =T5r (or 1)
(119)
In contrast, for 0 < §<1, we obtain
K oK
(u(t)’) = T x(Du(r)y=(1 5)1“[’
K
x®»=(1- 5)Ft2 (for 1 — o), (120)

revealing the ballistic nature of the associated diffusion pro-
cesses for any 0<<5<<1 as long as I" and K are both nonzero.
This universality is a direct consequence of the temporal re-
tardation in the collision term of Eq. (31). If this effect were
absent, such as in the master equation considered by Barkai
and Silbey [15], the dominant scaling behavior would be
given by (x(1)?)«1>~°, corresponding to sub-ballistic super-
diffusion.
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IV. SUMMARY AND CONCLUSIONS

In the present paper, we provided (a rederivation and) an
exact solution of a fractional (KFP equation, which was first
proposed in Ref. [12], assuming the absence of external
forces. This equation may be viewed as a model for anoma-
lous diffusion and non-Gaussian statistics of inertial, weakly
damped (as opposed to overdamped) particles. In contrast to
other fractional KFP-type equations found in the literature,
the version presented here can be based rigorously on a sta-
tistical model and exhibits Galilean invariance in the appro-
priate limiting case (I'=0). The corresponding Fokker-
Planck collision operator exhibits a retardation effect,
associated with nonlocal couplings in time and space.

Despite this complexity, several rigorous results concern-
ing the behavior of the position-velocity distribution function
could be derived. The latter tends to exhibit strongly non-
Gaussian characteristics. This is in stark contrast to the solu-
tions of the conventional KFP equation, where the PDFs are
known to become Gaussian in the long-time limit. Interest-
ingly, these non-Gaussian distributions can be described in
terms of suitable superpositions of Gaussian distributions. As
a consequence, the types of CTRWs proposed in this paper
can be used to model stochastic processes with non-normal
statistics and anomalous scaling behavior in time. Further-
more, we were able to calculate the long-time behavior of the
second-order moments, revealing the ballistic nature of the
associated diffusion processes for any 0<< <1 as long as I’
and K are both nonzero. This universality could be identified
as a direct consequence of retardation effects. Neglecting the
latter, the system would exhibit sub-ballistic superdiffusion
instead.

Although the main thrust of the present work has been on
the further development of the basic concepts of anomalous
diffusion rather than on particular applications, we are con-
fident that it will help shed light on the physics of inertial,
weakly damped particles exhibiting superdiffusion. The list
of physical systems for which the present approach may pro-
vide useful include, e.g., turbulent or sheared flows in fluids
and plasmas, complex liquids, porous glasses, and various
biological systems (see, e.g., Ref. [4], and references
therein).

APPENDIX A: FOKKER-PLANCK COLLISION
OPERATOR

In this appendix, we will show that the Fokker-Planck
collision operator

Lepg(u) =TV, - [ug(u)] + KA, g(u) (A1)

follows naturally from a suitable ansatz for the quantity
F(u,u’). To this aim, we take the latter to be a Gaussian of
the form

Flu: ,)_< A )3/2 (u—u’+Tu'/A)?
W=\ yax) P 4K/
(A2)

We thus get
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fdu’F(u;u’)g(U’) - g(u)

f ,( A )3/2 { (u—u’+Fu'/A)2]
= | da'{——=| exp|-
47K 4K/A

Xg(u') —g(u)
dw A\ w2
=f(1—F/A)3<m(> eXP[_ 4K/A}
"8 ( 1u-+rij) ~ &) (A3)

In the limit A —oe, the Gaussian is very narrow and the
function g may be Taylor expanded about u. Using the rela-

tionships
( A )3/2 W2
= d - =1, A4
4K f WP T 4kIA (a4)
(A)”fd i L Y
4K WP T akA | T A
and
r
(1-T/A)"=1+ ”X +O(A), (A6)

one thus obtains
f du'F(usu')g(u’) —g(w) = A" Lepg(u) (A7)
to leading order in A~

APPENDIX B: FRACTIONAL SUBSTANTIAL DERIVATIVE

In this appendix, we shall discuss a physical justification
of the formal substitution

Lo ) Lod (" a'
Javou-r 5] m=p

where 6 is taken from the range 0 << =< 1. This substitution
leads to fractional Fokker-Planck equations. For the present
case, it has to be generalized and will lead us to the definition
of fractional substantial derivatives.

We assume that the function Q(r) is characterized by the
existence of two ranges exhibiting different types of behav-
ior. An example we have in mind would be

— <
o) = {Ql(t) cg_t;st for t <A B2)
NGES fort > A

When evaluating convolution integrals involving Q(r—t'),
we will therefore separate them into two parts,
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t —A
f dr'Q(t—1")H(t") =f dr' Qy(t—1t")H(t")
0 0

+f dr'Q\(t—t")H(t"). (B3)
-A

Furthermore, we assume that the long-time behavior is given
by

1-6 1 B 1 i 1
T (1=t T(9dt(t-1)¢
(B4)

Qolr—1") =

As a consequence, we can rearrange the terms according to

f dr'Q(t—t")H(t")
0

_Lif” . H() 1 H(t-A)
“T@arl, CG=) T(e A

+ f dr'Q,(t—t")H(t")
A

t

=D!"°H(1) + f dr'Q\(1—1")H(t'")

—A
Lij’ . H(t) 1 H(-A)
TTOd), =TT A

(B5)

Provided that the function H is smooth, we may replace
H(t') and H(t—A) by H(z) in the limit A— 0. The last three
terms then read

T dr T T(s) A

H(t)f dr'Q\(t-t") -
=A
(B6)

The second of these terms vanishes as A tends to zero, and
the remaining two terms cancel provided we choose Q(7)

such that
A 1
dt = "—"—"T""7=.
L Q]( ) F(a)Al_g

(B7)
In this case, we recover Eq. (B1) in the limit A—0. Assum-
ing that Q,(r)=C=const, it follows from Eq. (B7) that C
=C(A) >« A%?2, which is consistent with Qy(A)oA%2,

Next, we would like to extend these considerations to the
regularization of the expression

f dt' Ot = )e "V (x,u,t). (B8)

0

Like before, we split the integral into several parts,
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t
fdt’Q(t—t’)e‘(“")“'vf(x,u,t’)

0

! ) 1-6
— dt' _ 1\ ,—(=t")uV ut')—
f_A 'Q,(t—1")e f(x,u,1") ')

—A dt! ,
Xf (t - [’)2_56_(t_t )u.vf(xﬂl’t,)

0

P L
=D, f(x,u,1) I,(5)[(%+u V]

tooar Ny
Xf A e )
-

t
+f dr'Q(t—1")e "V f(x,u,1")
—-A

1

- ﬁFE_A“'Vf(X,u,I -4),

(B9)

where

-6 N I
D, f(x,u,t)—r(a){at+u V}

Xft d—t,e‘(””)“'vf(x u,t'). (B10)
o (1=1)17?

Here, it is crucial to note that the substantial derivative en-
ters during the last step. Now, we use again the fact that
0,(r) can be chosen such that the last three terms on the
right-hand side of Eq. (B9) vanish in the limit A— 0, pro-
vided f(x,u,7) is a smooth function of ¢ and of x such that
f(x—u(t=t'),u,")=f(x,u,t)+O(A) for t=¢'. Thus in sum-
mary, we find that Eq. (B1) can be generalized to

' : 1 |d
dr'o(t—1' —(t=t")u-V _|:_ . V:|
fo o( )e — rola +u

1 !
Xf (t Clttr)l—_ae‘("">“'V:D}‘5.
.
(BI1)

We note that, alternatively, one may define this fractional
substantial derivative by means of its representation in
Laplace space,

DI [N +u- V] (B12)

This operator, describing retardation effects, is nonlocal in
time and space. For 6— 1, it becomes the identity operator. It
should be pointed out that the “naive” definition

! ) 1 o (" ar )
di' O(1 — e~ =1V 9 J ~(=1")u-vV
fo Qlr—r)e TT@al, (-1

(B13)

would not allow to perform this limit.
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